Pharmacology, pharmacokinetics and pharmacodynamics of different FSH preparations

Bernadette Mannaerts, b.mannaerts@organon.com
Director Clinical Projects Infertility,
Global Clinical Development Department,
NV Organon, Oss, The Netherlands

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Different classes of FSH preparations

A. Human-derived and recombinant HMW preparations (market)
B. Long-acting, recombinant, HMW preparations (clinical development)
C. Oral, LMW preparations (preclinical development)

Molecular structure
FSH receptor interaction
In vitro and in vivo preclinical pharmacology
Human pharmacokinetics
Human pharmacodynamics
Molecular structure of FSH

α-subunit is common
β-subunit is specific

4 N-linked carbohydrate side chains

92 amino acids

111 amino acids
Human FSH receptor complex

Extracellular domain
349 aa

264 aa

65 aa
Intracellular domain

Fan et al, Nature 2005

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Carbohydrate site chains FSH

Protein → 0-1 Fucose → 1-4 GlcNAc → 1-4 Galactose → 1-4 Sialic Acid

Asn → Common: 3 Mannose

Common: 2 N-acetylglucosamine (GlcNAc)

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
What is microheterogeneity?
Isoelectrofocusing of FSH preparations

- rFSH preparations have similar charge heterogeneity. *Horsman et al, 2000*

- compared to urinary FSH, rFSH contains a lower percentage of relative acidic isoforms. *Lambert et al, 1995*

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
In vitro and vivo biological properties of FSH isoforms

- Acidic isoforms show a lower receptor affinity and lower intrinsic bioactivity than less acidic isoforms (Ulloa-Aguirre et al. 1988)

- Due to more branched oligosaccharides and a higher degree of sialic acid, acidic isoforms have a lower clearance rate (Blum and Gupta, 1985; De Leeuw et al 1996).

- Differences in sialic acid affect the in vivo bioactivity (rat Steelman Pohley assay).
FSH isohormones have different in-vivo bioactivity

Mulders et al, 1997

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Pharmacokinetic behaviour in the Beagle dog

rFSH isohormone fractions

Modified from De Leeuw et al, 1996

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Induced multiple follicle growth by daily FSH
Human pharmacokinetics of rFSH

7-day multiple dose study in pituitary-suppressed volunteers

- $T_1/2 = 28 - 34$ hrs
- $T_{max} = 10 - 12$ hr
- $F = 78\%$

Mannaerts et al, 1996

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Factors influencing exposure to exogenous FSH

- Gender
- Endocrine status
- Body weight
- Route of administration
- Injection device
- FSH dose
- FSH isohormone profile
- FSH immunoassay

Mannaerts et al 1993; 1996
Human pharmacodynamics of FSH
7-day multiple dose study in pituitary-suppressed volunteers

rFSH 150 IU

uFSH 150 IU

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007

Mannaerts et al., 199
Long-acting corifollitropin alfa

Corifollitropin alfa is a novel recombinant gonadotrophin molecule in development, in which the FSH-β chain is fused with the carboxy-terminal peptide of the hCG-β subunit.

Corifollitropin alfa is a new class of drugs with the proposed drug class name Sustained Follicle Stimulants (SFS).
Molecular structure of corifollitropin alfa

Amino acid (AA) sequence:
- No deviation from human sequence
- No additional linkage AA

Carbohydrate side chains:
- 4 N-linked similar to FSH
- 4 O-linked similar to hCG
In vitro and in vivo preclinical pharmacology
corifollitropin alfa vs Puregon®

- No intrinsic LH/hCG activity
- Approximately 1.5 times lower receptor binding activity and therefore in vitro bioactivity
- Two times higher in vivo bioactivity
- Four times higher ovulatory potential in immature rats
- Pharmacokinetics in dogs:
 - lower clearance rate
 - prolonged half-life (T$_{1/2}$: 43 hrs vs Puregon® 29 hrs)
Pharmacokinetic behaviour in the Beagle dog

- Puregon/Follistim i.m.
- Org 36286 i.v.
- Org 36286 i.m.

FSH immuno-activity (Delfia IU/l)

Hours after injection

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Pharmacokinetics of corifollitropin alfa

women of reproductive age

<table>
<thead>
<tr>
<th></th>
<th>Corifollitropin alfa</th>
<th>Puregon®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elimination half-life</td>
<td>60-75 hrs</td>
<td>28-34 hrs</td>
</tr>
<tr>
<td>T_{max}</td>
<td>36-48 hrs</td>
<td>10-12 hrs</td>
</tr>
<tr>
<td>Apparent volume of distribution</td>
<td>~22 L</td>
<td>~30 L</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>78%</td>
</tr>
</tbody>
</table>

The single dose pharmacokinetics of corifollitropin alfa are dose-proportional within the dose-range tested (60 to 240 µg).
Corifollitropin alfa one-week regimen

FSH Activity

Stimulation days

1 2 3 4 5 6 7 8 9

threshold

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Mean # follicles on treatment day 8

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Dose-finding trial of corifollitropin alfa

Estradiol

Inhibin-B

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Effect of body weight on inhibin-B

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007
Dose selection of corifollitropin alfa for a one-week interval

Modeling and Simulation, including:
 * Pharmacokinetics, exposure first week and thereafter
 * Initial follicular response, reflects response to Org 36286
 * Number of oocytes, reflects response to regimen
 * Inhibin-B levels, sensitive marker for (lack of) stimulation
 * Covariate analysis, e.g. age, body weight, dose, GnRH analogue

Corifollitropin alfa is developed in two therapeutic strengths:
 * 100 µg for patients with body weight ≤ 60 kg
 * 150 µg for patients with body weight > 60 kg

De Greef et al, ESHRE 2007, Abstract O-099
LMW FSH agonists

Follicle-Stimulating Hormone

Disulfide bridges

Glycosylation at Asn-57 and Asn-78 of the α-subunit

Glycosylation at Asn-7 and Asn-24 of the β-subunit

LMW agonist
Receptor interaction by LMW FSH molecules
LMW FSH agonists

- Compound homogeneity; more consistent pharmacological response?
- Different receptor interaction; new insight into pharmacology and genetics?
- Tailor-made elimination half-life; improved efficacy and safety?
- Oral administration; for ease of administration!

Fifth World Congress on Ovulation Induction, Rome, September 13 to 15, 2007